-x^2+7=x^2-7

Simple and best practice solution for -x^2+7=x^2-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -x^2+7=x^2-7 equation:



-x^2+7=x^2-7
We move all terms to the left:
-x^2+7-(x^2-7)=0
We add all the numbers together, and all the variables
-1x^2-(x^2-7)+7=0
We get rid of parentheses
-1x^2-x^2+7+7=0
We add all the numbers together, and all the variables
-2x^2+14=0
a = -2; b = 0; c = +14;
Δ = b2-4ac
Δ = 02-4·(-2)·14
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*-2}=\frac{0-4\sqrt{7}}{-4} =-\frac{4\sqrt{7}}{-4} =-\frac{\sqrt{7}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*-2}=\frac{0+4\sqrt{7}}{-4} =\frac{4\sqrt{7}}{-4} =\frac{\sqrt{7}}{-1} $

See similar equations:

| n-21/3=-2/9 | | -8t-20=-10t+20 | | (×+20)=(10x-5) | | 12+5x=3x+2 | | 85000÷x=17 | | 5x+1=3x+7+2x | | (x-15)^2=2 | | 10-9s=-8s | | 12(-3x+7)-19=23-4x | | -(6x-1)=-11 | | 1/2g+10=4 | | 4(x-1)-2x=3x+10 | | 4.2x-1.4-x=-2 | | 10-7s=-5s | | (3y+2)+65=180 | | -(0.83)y=12 | | 7=-3/7x+2 | | x/15=1.6/2 | | 12g+10=4 | | (3x−8)=(6x−2) | | k-16=6-2k-13 | | 5p-6=4p | | | | 3x9=3(x-3) | | 4(x-5)=2(-10+2x) | | 5.6=n+1.3 | | -61=2-9x | | -x+(-13)=20 | | 1/4(2-x)=5+3× | | 5x+30=3x+180 | | 2+-3/7x=7 | | (x-7)/(10)=-3 |

Equations solver categories